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Protein kinases are critical components of signaling pathways and trigger various biological
events. Several members of this superfamily are interesting targets for novel therapeutic
approaches. All known eukaryotic protein kinases exhibit a conserved catalytic core domain
with an adenosine 5′-triphosphate (ATP) binding site, which often is targeted in drug discovery
programs. However, as ATP is common to kinases and other proteins, specific protein-ligand
interactions are crucial prerequisites for valuable ATP site-directed ligands. In the present
study, a set of 26 X-ray structures of eukaryotic protein kinases were classified into subfamilies
with similar protein-ligand interactions in the ATP binding site using a chemometrical
approach based on principal component analysis (PCA) and consensus PCA. This classification
does not rely on protein sequence similarities, as descriptors are derived from three-dimensional
(3D) binding site information only computed using GRID molecular interaction fields. The
resulting classification, which we refer to as “target family landscape”, lead to the identification
of common binding pattern and specific interaction sites for particular kinase subfamilies.
Moreover, those findings are in good agreement with experimental selectivity profiles for a
series of 2,6,9-substituted purines as CDK inhibitors. Their interpretation in structural terms
unveiled favorable substitutions toward selective CDK inhibitors and thus allowed for a rational
design of specific ligands with minimized side effects. Additional 3D-quantitative structure-
activity relationship (QSAR) analyses of a larger set of CDK-directed purines lead to the
identification of essential structural requirements for affinity in this CDK ATP binding site.
The combined interpretation of 3D-QSAR and the kinase target family landscape provides a
consistent view to protein-ligand interactions, which are both favorable for affinity and
selectivity in this important subfamily.

1. Introduction
Large protein families such as protein kinases or

proteases have been identified during the past decade
containing many pharmaceutically relevant targets. The
eukaryotic protein kinases form a large superfamily of
homologous proteins,1 related by virtue of their kinase
domains (also known as catalytic domains), which
encompass 250-300 amino acids,2-4 and exhibit a
conserved catalytic core structure, as obvious from
protein X-ray structures.5 Although there is a rich
diversity of structures, regulation modes, and substrate
specificities in this family, there are common features
such as the catalytic core, indicating how kinases
transfer phosphate to serine, threonine, or tyrosine
residues of their protein substrates. The reversible
regulation of protein phosphorylation by kinases and
phosphatases is essential for controlling and triggering
a broad variety of cellular events, e.g., cellular signaling
pathways and metabolic functions.6,7 Protein kinases
themselves are regulated by a variety of mechanisms
including phosphorylation and control by additional
regulatory domains.

Selective inhibitors of kinases being explored as new
therapeutic targets in several pharmaceutical compa-
nies may have value in a wide range of diseases, such
as cancer, diabetes, and arthritis.8 In particular, inhibi-
tion by targeting the conserved adenosine 5′-triphos-
phate (ATP) binding site,3,9,10 located in the kinase
domain, is seen as a valuable approach. However, there
are common recognition patterns for ATP in kinases and
other ATP binding protein families, which underscore
the importance of specificity for ATP site-directed kinase
inhibitors. More than 2000 ATP utilizing proteins are
estimated in the human genome.11,12 Small kinase inhib-
itors with acceptable selectivity profiles have recently
been reported.13,14 Any successful inhibitor design for
the conserved ATP binding side requires highly specific
interaction in order not to interfere with other kinases
and pathways. While some kinases are highly specific
and will only recognize a few target molecules in vivo,
others show a much broader specificity profile and, once
activated, are able to phosphorylate multiple target
proteins. The identification and structural classification
of unique protein-ligand interactions for designing
selective kinase inhibitors thus is a challenging task in
structural biology and drug discovery.
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In this paper, a classification of 26 different protein
kinases is described, based on three-dimensional (3D)
structural information about their ATP binding site. The
computational approach does not rely on protein se-
quence comparisons. In contrast, it is based on an
adequate 3D description of potential protein-ligand
interactions using the GRID force field.15,16 This
information combined with a powerful chemometrical
approach can be used to extract common features among
all protein kinase binding sites and highlight those
areas that reveal most interaction pattern differences.
Such a quantitative analysis of GRID-derived molecular
interaction fields (MIFs) from kinase binding sites not
only leads to a classification but also leads to an
understanding of which structural features in terms of
potential ligand interactions are responsible and most
characteristic for a particular kinase subfamily. The
availability of experimental 3D protein kinases struc-
tures allows for a quantitative description of selectivity
differences using principal component analysis (PCA)17

and consensus PCA (CPCA),18,19 resulting in a consis-
tent picture in good agreement with experimental data
on ligand selectivity profiles and structure-activity
relationships (SAR). This approach is related to previous
investigations of the “protein selectivity problem” for
targets such as DNA,20 dihydrofolate reductase,21 matrix
metalloproteinases,22,23 and cyclooxygenase,24 while those
only allowed to compare two proteins. The approach
presented herein uses a different data organization and
variable scaling18 to overcome this limitation and iden-
tify specificity regions based on weaker hydrophobic
interactions. This approach was first applied to under-
stand selectivity in the factor Xa/thrombin/trypsin fam-
ily.18 We present here an application of this strategy to
a broader set of proteins toward a structural classifica-
tion, allowing the straightforward identification of pos-
sible modifications for selected ligands to improve their
selectivity toward a chosen target kinase. Hence, this
computational strategy to rationalize ligand selectivities
is a valuable tool for designing kinase specific inhibitors
with reduced side effects.

This approach will be illustrated in combination with
ligand SAR data and 3D-quantitative SAR (QSAR)
models (comparative molecular field analysis (CoMFA)
and comparative molecular similarity index analysis
(CoMSIA)) for a reported series of cyclin-dependent
kinase inhibitors,25,26 where sterical, electronic, or hy-
drophobic effects are important to explain affinity
toward CDKs. These analyses in combination with
protein-derived selectivity models, which we refer to as
“target family landscapes”, provide valuable information
toward the design of potent and selective CDK inhibi-
tors.

The alignment rule for 3D-QSAR analyses of purine-
based CDK inhibitors was derived using manual dock-
ing based on the available X-ray structure of purvalanol
B (Scheme 1) in complex with CDK2.27 The resulting
superposition of all other compounds onto this template
followed by energy minimization produced consistent
QSAR models explaining the most relevant ligand-
enzyme interactions. CoMFA28-30 and CoMSIA31,32 are
used to derive statistical relationships between molec-
ular property fields and biological activities. The PLS
method (partial least squares)33 is used to derive a linear

relationship for highly underdetermined matrixes, while
cross validation34 is used to check for consistency and
predictiveness. The contour maps from both 3D-QSAR
models enhance the understanding of electrostatic,
hydrophobic, and steric requirements for affinity, while
the statistical protein structure analysis provides guide-
lines for designing selective CDK inhibitors.

2. Experimental Section
2.1. Protein Structures. All modeling studies were done

using the program Sybyl35 on SGI workstations. Docking,
QSAR analysis, and protein superposition steps were auto-
mated using scripts in PERL and SPL (Sybyl Programming
Language). All energy calculations were based on the MMFF94s
force field36 using MMFF94 charges. Conformations of ligands
and complexes were minimized using quasi-Newton-Raphson
or conjugate gradient procedures. All 3D structures from X-ray
crystallographic studies of protein kinases were retrieved from
the Research Collaboratory for Structural Bioinformatics
(RCSB) protein database.37 For these files, cofactors, counte-
rions, ligands, and structural water were removed prior to
computing GRID-derived16 MIFs. All protein structures were
carefully checked for inconsistencies, missing side chains, or
amino acids. Only consistent structures were retained, leading
to a set of 26 kinases for statistical analysis, as summarized
in Table 1.

2.2. Protein Alignment. The quality of the chemometrical
results is dependent on the alignment strategy. Hence, an
unbiased alignment strategy is preferable, as it allows to
quickly add proteins for classification to the training set. After
evaluating different approaches, the following strategy was
adequate.

First, a multiple sequence alignment of all candidate
proteins with known 3D structures was generated using the
program Composer.38 The identified seed residues served as
the basis for 3D structural alignment, leading to the identi-
fication of structurally conserved regions (SCRs) among the
entire protein ensemble. The X-ray structure of a cyclic
adenosine 5′-monophosphate (cAMP)-dependent protein kinase
with a peptide inhibitor 1ATP39 was used as reference40 for
this and all following steps (resolution 2.2 Å). The SCRs were
used for an initial pairwise root mean square fitting of
corresponding backbone atoms of all proteins to the reference
structure. In two fitting iterations, individual amino acid pairs
with a deviation larger than 3 × SD from the previous
alignment solution were rejected, leading to an unambiguous
alignment with an acceptable superposition of important
structural elements.

Scheme 1. Chemical Structures of Selected Purine
Derivatives as CDK Inhibitors
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2.3. MIFs. A multivariate description of the binding cavities
for aligned protein kinases was done using the GRID force
field15,16 with five probes (Table 2), 1 Å grid spacing, and static
protein treatment (GRID directive MOVE ) 0). Hydrogens
were added to the aligned structures using the program GRIN.
The GRID box dimensions were selected to include all relevant
parts of the kinases active sites. Preliminary chemometrical
analyses using CPCA18 revealed that the GRID water and
methyl probes contain similar information to other probes
(CPCA superweights plot). Consequently, those probes were
rejected for the final data analysis.

The data from GRID MIFs were organized as indicated in
Figure 1 for the chemometrical analysis.18 Starting from the
GRID interaction field for one single probe and one protein, a
vector is constructed. Subsequent interaction fields for other
probes are concatenated to this vector to result in a long vector
containing x GRID × n probes points. Similar vectors were
derived for all protein kinases. At the end, the resulting X
matrix prior to analysis has one single row for each of the 26

protein kinase 3D structures and x × n columns (i.e., GRID
interaction points), as shown in Figure 1.

2.4. Chemometrical Analysis. This X matrix was ana-
lyzed using PCA17 and CPCA,18,19 as implemented in the
program GOLPE.41,42 A maximum cutoff value of 0 kcal/mol
was used. When using only favorable interaction energies, the
information related to steric repulsion is removed and the
analysis is focused on attractive protein-ligand interactions.
PCA studies including repulsive interactions do not qualita-
tively change the classifications (no data shown). However, as
we were interested in extracting favorable interactions for
specificity, we chose only to incorporate attractive data points
for final analysis. In addition, only GRID points within a
radius of 4.0 Å around the ATP binding area were considered
using the GOLPE region cutout tool for appropriate variable
selection. Furthermore, 2- and 3-level variables and columns
with an SD below 0.03 as threshold were rejected.41

The chosen data organization allows to apply block unscaled
weights (BUW) scaling in order to normalize the importance
of probe interactions in the final PCA and CPCA model, which
was not possible following the original data setup.18,41 This
method scales each single probe-protein interaction field
separately, whereas the relative scales of variables within each
block remain unchanged. This procedure is shown in Figure
2 with the initial GRID interaction energy distribution of the
x variables for each probe and their normalized distribution
after scaling.

In PCA,17 the scaled data matrix X with interaction energies
xik for i protein interactions and k grid points is decomposed
to means (xk), scores (tia), loadings (pak), and residuals (eik),

Table 1. Overview of 26 Experimental Kinase Structures with Cofactors and PDB Code Used for GRID/CPCA Studya

protein kinase full length/domain cofactor/ligand PDB code conformation

Serine/Threonine Kinases
cAPK catalytic subunit,

mouse 350 a.a.
adenosine 1BKX active

catalytic subunit,
mouse 350 a.a.

PKIb and ATP 1ATP acitve

catalytic subunit,
mouse 350 a.a.

PKI and ATP 1CDK active

catalytic subunit,
mouse 350 a.a.

PKI and balanol 1BX6 active

catalytic subunit,
mouse 350 a.a.

PKI and staurostorine 1STC active

catalytic subunit,
bovine 350 a.a.

PKI and isoquinoline 1YDT active

catalytic subunit,
bovine 350 a.a.

PKI and isoquinoline 1YDS active

PKI and adenosine 1FMO active
catalytic subunit,

bovine 350 a.a.
PKI and isoquinoline 1YDR active

CDK2 full length 298 a.a ATP 1HCK inactive
full length 298 a.a purvalanol B 1CKP inactive
full length 298 a.a ATP and cyclin 1FIN (chain A

and B)
p. active

full length 298 a.a olomucine 1B38 inactive
in house purine analogue SHKB inactive
in house flavone FLAV inactive
MAP full length,

rat 364 a.a.
1ERK inactive

full length, rat mutation
arginine a.a. 52

1GOL inactive

full length, 397 a.a. 1P38 inactive
phosphorylase kinase kinase domain 298 a.a. AMPPNP 1PHK active
CK-1 truncated 298 a.a. ATP 1CSN active

Receptor Tyrosine Kinases
insuline receptor TK kinase domain 306 a.a. AMPPNPc and peptide substrate 1IR3 active
FGFIR kinase domain 310 a.a. oxindol inhibition 1FGI (chain A

and B)
inactive

Nonreceptor Tyrosine Kinases
human c-Src 452 a.a. 2SRC inactive
human lymph kinase kinase domain 271 a.a. 3LCK active
a For PDB structures with active or inactive kinase conformation, results from the final CPCA analysis were compared. No significant

differences were identified. b PKI ) protein kinase inhibitor peptide. c AMPPNP ) not hydrolyzable ATP due to N linkage of â and γ
phosphate.

Table 2. GRID Probes Used for GRID/PCA and GRID/CPCA
Study

grid probe chemical functionality

DRY hydrophobic probe
O sp2 carbonyl oxygen
N1 neutral flat NH, e.g., amide
C3a sp3 methyl probe
OH2a water

a Probe rejected for final GRID/CPCA analysis.
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with a denoting the number of model dimensions

The data matrix X is approximated by the product of two
smaller matrixes, scores, and loadings. The score matrix pak

gives a simplified picture of the objects (proteins interacting
by multiple probes), represented by new uncorrelated vari-
ables. Scores plots can be used to visualize the grouping of
protein kinases based on their protein-probe interaction
pattern. The PCA of such an X matrix produces a score plot
where each protein structure is represented by a single point.
Protein kinases with similarities in their ATP binding sitess
especially similar interaction pattern to adequate GRID
probessshould be clustered. The analysis then is able to focus
on differences between the common features of target sub-

families. The first new principal component (PC) describes the
maximum variance among all possible directions, the second
one the next largest variation among all directions orthogonal
to the first one, etc. The resulting eigenvalues represent the
overall variance after extraction of each successive new factor.
If most of the variation of the original data can be described
by the first few factors, a much simpler data structure exists.
Here, the NIPALS17a algorithm was used, which calculates
every component in a stepwise manner and is faster than
diagonalization of the covariance matrix if only the first
eigenvalues are desired. The PC axes were not additionally
rotated.

CPCA18,19 evaluates the relative importance of individual
probes for the PCA model. Because the X data matrix is
structured in meaningful blocks given by the GRID probe
interaction fields, hierarchical PCA methods such as hierarchi-
cal PCA43 and CPCA provide interesting information regarding
the relative importance of the different blocks (i.e., probes) in

Figure 1. Data organization of GRID MIFs for PCA and CPCA.18 Starting from GRID calculations for one probe, a vector containing
all interaction energies at the k grid points is constructed. These vectors are compiled into one long vector containing protein-
probe interaction energy points. Stacking the long vectors for every target protein results in the final X matrix for PCA.

Figure 2. Raw (a) and normalized (b) GRID-derived probe interaction energies using BUW to unit variance for each probe.

xik ) xk + ∑
a)1

A

tia × pak + eik
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the analysis. CPCA uses the same objective function as PCA
to explain X matrix variance. The analysis is made on a block
level (i.e., individual probe-derived fields) and on a consensus
level combining all blocks; the latter analysis is similar to a
regular PCA. For each block, individual scores and loadings
are obtained together with their relative importance for the
consensus block. Block scores represent a particular, con-
strained submodel for a particular probe (i.e., interaction type)
and add information, which is not available from PCA. Those
individual scores are plotted for analysis of the kinase selectiv-
ity model for the remaing individual N1, O, and DRY probes.
Block scores represent a particular point of view of the model
given by a certain probe and provide unique information not
present in the regular PCA model. Object distances in the block
scores are used in GOLPE to assess the relative importance
of the different probes in their discrimination.

The analysis of PCA and CPCA loadings plot containing
information about the interaction fields between a GRID probe
and the target protein structure is done using active plots as
novel GOLPE plot options.18 Those active plots help to focus
on those PCA or CPCA loadings, which are able to discriminate
between protein kinase subfamilies. They represent isocontour
plots of their GRID interaction field variables, which contribute
most to explain differences between two manually specified
objects in the scores plot for a multicomponent PCA or CPCA
model. Hence, these active plots greatly simplify the analysis
step to result in a meaningful chemical interpretation of kinase
selectivity differences. On the basis of a CPCA model, those
plots can be obtained for each individual probe interaction field
and thus answer the question, which particular probe is
responsible for an observed selectivity difference.

2.5. 3D-QSAR Studies. For manual docking, the purval-
anol B/CDK2 crystal structure 1CKP27 with a resolution of 2.0
Å was used. After analysis of key protein-ligand interactions
using GRID,16 candidate molecules were manually docked into
the active site. Subsequently, the resulting protein-ligand
complexes were minimized treating all ligand atoms plus
protein residues within a sphere of 5 Å around the ligand as
flexible, while the remaining protein was only used to compute
nonbonded interactions. Other compounds taken from ref 25
were manually built, superimposed onto this template, and
minimized under identical conditions. The alignment for all
molecules listed in Table 4 served as basis for all 3D-QSAR
studies.

For CoMFA, steric and electrostatic interaction energies
between a probe atom and those molecules are calculated at
predefined grid points using a volume-dependent lattice with
2 Å spacing and Sybyl default settings. For CoMSIA,31 the
same alignment was used to compute steric, electrostatic, and
hydrophobic similarity index fields44 using a probe with charge
+1, a radius of +1, a hydrophobicity of +1, and 0.3 as
attenuation factor R for the Gaussian type distance depen-
dence. Cross-validated analyses after CoMFA scaling45 were
run using leave-one-out in SAMPLS46 or two and five cross
validation groups with random selection of group members.
PLS analyses using two or five randomly selected cross
validation groups were averaged over 100 runs. For CoMFA,
columns with a variance smaller than 2.0 were excluded prior
to the PLS analysis (minimum σ). The overall quality of all
PLS analyses was expressed using the cross-validated r2 value
r2(cv). For validation, all biological activities were randomized47

100 times, and the mean cross-validated r2 was calculated.

3. Results and Discussion

3.1. Structural Alignment and GRID/CPCA
Model. The alignment strategy produces an acceptable
superposition of protein kinases based on the 1ATP
fold39 as a reference structure. Characteristic features
of the protein kinase catalytic domain fold are illus-
trated in Figure 3 (left), where SCRs are indicated. The
final alignment of 26 target proteins is shown in Figure
3 (right), where the ATP binding site is highlighted.

Only GRID points within a radius of 4.0 Å around
the consensus binding region as defined by the ligand
molecules in the aligned X-ray structures were selected
for analysis using PCA and CPCA.18 Using three
relevant GRID probes in the final analysis (N1, O,
DRY), a significant CPCA model was obtained, which
highlights active site regions as potential target sites
for obtaining selective interactions to particular ligands.
The combined super-scores from CPCA (related to a
regular PCA score plot) are plotted in Figure 4 with the
first relevant component on the x-axis and the second
on the y-axis. The analysis now is focused to individual
contributions of particular GRID probes for analysis of
kinase active site selectivity regions. Individual score
plots per GRID probe from CPCA only show minor
differences in the orientations of kinase subfamilies
without a fundamentally different interpretation. We
will name these PCA and CPCA score plots target
family landscapes, as they allow to classify an important
target family according to a common and unique inter-
action pattern between protein active sites and probe
atoms as “mimic” for small molecular ligands. This
classification is solely based on a 3D interaction pattern,
while protein 2D similarity considerations are only
taken into account during the chosen alignment strategy
and not for classification.

The first PC (x-axis in Figure 4) in the PCA and each
individual CPCA block model separate CDK and MAP/
receptor kinases on the left with negative PC1 score
values from the family of PKA kinases, while the
interpretation of the corresponding loadings plots in the
next section allows us to focus on structural features in
the active sites responsible for this separation. The CDK
family is represented in two distinct clusters in the
target family landscape (Figure 4), formed by two
different ATP binding site conformations corresponding
to the activated and inactivated kinase conformations
depending on the binding of cyclin in the complex. The
second PC allows us to separate between MAP and other
receptor kinases with positive scores in PC2 and the
CDK family showing negative PC1 and PC2 scores.

3.2. Interpretation of the GRID/PCA Model in
Structural Terms. Those kinase subfamily selectivity
differences are plotted in Figure 5 for PC1 and PC2 for
the DRY GRID probe derived from the PCA model.

Table 3. In Vitro Antikinase Activity (IC50 [µM]) of Selected ATP Antagonists as CDK Inhibitors48

compd
CDK1

cyclin B
CDK2

cyclin A
CDK2

cyclin E
CDK4

cyclin D1
MAP kinase

ERK1
MAP kinase

ERK2
cAMP-dependent

kinase
cGMP-dependent

kinase

isopentenyl
adenine

45 50 200 90 50 50 50

olomoucine 7 7 7 >1000 30 7 >2000 >2000
roscovitine 0.65 0.7 0.7 >100 34 14 >1000 1000
purvalanol A 0.004 0.07 0.035 0.85 9 9 >10
purvalanol B 0.006 0.006 0.009 >10 3.3 3.8 >100
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Negative contour regions are shown in cyan, and posi-
tive regions are displayed in yellow. The crystallo-
graphically determined conformation of a bound ATP
molecule from the Protein Data Bank (PDB) file 1ATP

(cAMP, mouse subunit39) is shown for comparison.
Positive contours in PC1 (yellow) indicate regions with
preferences for PKA for a particular chemical interac-
tion, while negative contours (cyan) highlight favorable
and selective interactions to the family of CDK/MAP
kinases. In PC2, negative interactions (cyan) character-
ize favorable and selective regions for CDK kinases,
while positive regions (yellow) are favorable for MAP
kinases. PC1 is dominated by selectivity subsites in the
kinase purine and hinge binding region, while only a
few contour regions are located in the phosphate binding
area or directed toward the substrate binding region.
In contrast to the first PC, the discrimination in PC2 is
also driven by structural differences in the phosphate
binding area.

To illustrate the use of the target family landscape
for understanding kinase selectivity profiles, a series
of reported 2,6,9-substituted purines25 as selective CDK
inhibitors will be discussed in combination with GRID-
derived MIFs and CPCA differential plots. Only nega-
tive contour regions will be shown, corresponding to
those binding site areas that are responsible for CDK
family selectivity. The compound structures are given
in Scheme 1, while their kinase activities for a broader
panel are summarized in Table 3.48,49 In search for more

Table 4. 2,6,9-Substituted Purines as CDK Inhibitors for 3D-QSAR Analysisa

compd
CDK1

IC50 (mM) PIC50

CoMFA
PIC50

CoMSIA
PIC50 compd

CDK1
IC50 (mM) PIC50

CoMFA
PIC50

CoMSIA
PIC50

purvalanol B 20 4.70 4.70 4.73 118 700 3.15 3.27 3.19
96 30 4.52 4.32 4.34 roscovitine 700 3.15 3.24 2.74
amino purvalanol 33 4.48 4.28 4.39 359 790 3.10 3.54 3.67
60 35 4.46 4.09 4.15 59 800 3.10 3.08 2.78
purvalanol A 35 4.46 4.01 4.11 309 900 3.05 2.91 2.99
73 40 4.40 4.29 4.26 37 1000 3.00 3.15 3.18
98 52 4.28 4.39 4.31 13 1200 2.92 3.41 3.31
356 80 4.10 4.36 4.28 209 1200 2.92 2.49 2.59
36 100 4.00 3.37 3.82 226 1200 2.92 3.09 3.01
94 100 4.00 4.15 4.16 15 1300 2.89 2.75 2.92
33 130 3.89 3.81 3.85 219 1300 2.89 2.72 2.83
220 130 3.89 3.19 3.37 223 1300 2.89 2.71 2.71
212 160 3.80 3.21 3.30 306 1400 2.85 3.09 3.04
112 170 3.77 3.68 3.52 224 1500 2.82 2.87 2.93
10 210 3.68 3.37 3.49 41 1600 2.80 2.83 3.08
304 220 3.66 3.45 3.55 61 2300 2.64 2.85 3.07
52 220 3.66 3.36 3.23 54 2700 2.57 2.60 2.47
52 220 3.66 3.32 3.21 49 2800 2.55 2.38 2.53
303 230 3.64 3.67 3.68 50 2800 2.55 2.87 2.74
75 230 3.64 3.57 3.67 222 3000 2.52 2.78 2.75
216 230 3.64 3.46 3.59 106 4000 2.40 2.18 2.76
78 240 3.62 3.96 3.96 38 4000 2.40 2.59 2.29
211 250 3.60 3.81 3.60 43 4300 2.37 2.42 2.38
45 270 3.57 3.34 3.39 318 4400 2.36 2.59 2.37
64 290 3.54 3.59 3.42 302 5000 2.30 2.35 2.43
307 300 3.52 3.78 3.68 40 5000 2.30 2.50 2.22
68 300 3.52 3.61 3.43 67 5000 2.30 2.48 2.57
26 330 3.48 3.54 3.42 69 5000 2.30 2.29 2.49
77 360 3.44 3.95 3.76 301 5000 2.30 2.27 2.12
66 400 3.40 3.27 3.47 311 5000 2.30 2.13 2.49
44 400 3.40 3.20 3.25 312 5000 2.30 3.00 2.90
65 400 3.40 3.14 3.05 313 5300 2.28 1.92 2.01
51 420 3.38 3.20 3.10 113 6000 2.22 2.38 2.13
47 430 3.37 3.54 3.61 27 6500 2.19 2.42 2.39
314 450 3.35 3.29 3.40 11 7000 2.15 2.06 2.12
58 500 3.30 3.12 3.22 310 7000 2.15 2.32 2.00
62 500 3.30 2.83 2.83 olomoucine 7000 2.15 2.53 2.94
70 500 3.30 3.44 3.09 225 9000 2.05 1.82 1.98
71 500 3.30 3.08 3.39 46 9000 2.05 2.38 2.52
308 530 3.28 3.23 3.62 316 10000 2.00 2.20 2.20
28 560 3.25 3.76 3.36 317 10000 2.00 2.19 1.86
76 600 3.22 3.27 3.26 53 10000 2.00 2.22 2.32
110 620 3.21 3.32 3.00 12 10800 1.97 1.99 1.85

a Compound numbering and experimental affinities against CDK1 were taken from ref 25. Affinity predictions are based on final
CoMFA or CoMSIA models.

Figure 3. (a) Typical kinase fold illustrated using the protein
1ATP as reference for alignment. (b) Twenty-six protein
kinases aligned using structural conserved regions (SCRs)
identified using the outlined alignment strategy. For compari-
son, a bound molecule ATP located in the highly conserved
ATP binding site is shown. Only GRID-derived probe interac-
tion energies within 4.5 Å around this ligand are used for
chemometrical analysis.
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specific CDK inhibitors,48 a growing number of scaffolds
have been investigated with 6-aminopurine derivates
as one interesting chemotype.25-27,50 The inhibitors
discussed herein were shown to be competitive CDK
inhibitors with respect to ATP. X-ray crystal structures
of representative compounds such as olomoucine, ros-
covitine, and purvalanol B (Table 3, Scheme 1) in
complex with monomeric CDK2 reveal binding within
the kinase ATP binding site, while the binding mode
and H-bonding pattern significantly differs to the ATP/
CDK complex.27,51

In Figures 6 and 7, the X-ray-derived conformation
of roscovitine (IC50 0.65 µM/CDK1; 0.70 µM/CDK2) from
its complex with CDK251b is shown in combination with
contour regions from the CPCA loadings plot for three
different probes to illustrate selectivity regions in both
PCs. Cyan contours indicate those regions where selec-
tive interactions using the indicated probe or a chemi-
cally closely related functional group is predicted to
increase selective interactions toward the CDK family
(Figure 4).

As can be seen from the PC1 contour plots, which
highlight regions discriminating the CDK/MAP families
from PKA, hydrophobic interactions close to position N9
of the purine scaffold and C2′ at the purine N1′
substituent are favorable for selectivity toward the CDK
family (atom numbering, see Scheme 1). Especially, the
CPCA PC1 loadings derived using the DRY probe
interactions (Figure 6a, upper left panel) correspond to

Figure 4. PCA score plot for analysis using all three different GRID probes (N1, O, and DRY) for this final analysis. The plot
(target family landscape) illustrates the differences of several kinase families in the chemometrical space.

Figure 5. PCA differential plots for the first (a) and second
(b) PCA component for all three different probes to highlight
field differences for discrimination between various kinase
families. The separation between kinase families could be
rationalized by different molecular field interaction areas
within the ATP binding pocket of 1ATP. In PC1, main
differences are almost in the ATP-purin pocket, while in PC2
significant differences occur also in the phosphate binding area
and in additional pockets not occupied by ATP.
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the experimental finding that olomoucine is a more
selective CDK inhibitor than the unsubstituted isopen-
tenyladenine,51a as shown in Table 3. In agreement with
these DRY probe-derived contour maps, the addition of
a methyl group at N9 and a hydroxyethyl moiety at N1′
are correlated with this enhanced selectivity profile.
CDK selectivity is further improved in the more potent
inhibitors roscovitine, purvalanol A, purvalanol B, and
amino-purvalanol. Here, N9 carries the larger, hydro-
phobic isopropyl group instead of methyl (Table 3),
which is better accommodated in the hydrophobic back-
pocket formed by the amino acid side chains of Val64,
Phe80, and Ala144 in CDK2. Moreover, the lipophilic
amino acid Phe80, which is the amino acid at the
beginning of the kinase hinge region limits this hydro-
phobic back-pocket. When inspecting the 3D structures

of PKA kinases, this phenylalanine is replaced against
a methionine with a different lipophilic character. This
residue also closes the back-pocket in the PKA family,
while it shows increased possibilities for side chain
flexibility. In contrast, MAP kinases have a polar
residue at this key position in the ATP binding pocket
(Thr in p38 kinase, Gln in ERK), which opens or closes
the back-pocket depending on size and key interactions.

Furthermore, the CDK selective molecules rosco-
vitine, purvalanol A, and purvalanol B are substituted
at carbon atom C2′ of the hydroxyethyl chain with a
hydrophobic ethyl or isopropyl substituent, respectively.
This favorable substitution is directed toward another
hydrophobic binding site area close to residues Ile10 and
Val18, while the primary hydroxy functionality is
located in a polar ATP binding site region. These
modifications at the isopentenyladenine scaffold con-
sistently increase affinity and selectivity of the resulting
molecules toward CDK1 and 2, while the basal activity
against other kinase families is not significantly af-
fected, which is in perfect agreement with the target
family landscape-derived kinase selectivity map.

The favorable effect of the hydroxyethyl addition at
position N1′ is in agreement with the N1 probe-derived
CPCA loadings plot (Figure 6a, lower left panel), where
the contour maps clearly indicate favorable polar inter-
actions in this area close to the primary hydroxy group.
This binding site area is solvent-exposed and located
in the vicinity of polar amino acid side chains. The polar
probes N1 and O (Figure 6, upper right panel) further
indicate that particular substituents introduced into the
meta and/or para position of the roscovitine N-benzyl
ring should also improve selectivity. The N-phenyl ring
of purvalanol B, for example, is accommodated by the
side chains of Ile10 and the more hydrophobic Câ-Cγ
chain of Gln85. Both proposed substitutions have been
realized in purvalanol A on the N-phenyl ring (meta-
chlorine) and purvalanol B (meta-chlorine and para-
carboxylic acid), resulting in highly CDK selective
kinase inhibitors. The aromatic chlorine atom is directed
toward the Asp86 carboxylate in the corresponding
X-ray structure 1CKP, while the purvalanol B carbox-
ylate is within an interacting distance to Lys89-Nε.
Purvalanol B, for example, has a CDK1/CDK2A affinity
of 6 nM (9 nM for CDK2B), while it shows a lower in
vitro activity against representative members of other
kinase families.

The second PC explains selectivity differences be-
tween the CDK family vs MAP kinases. Again, substi-
tution at the positions N9 and C2′ at the purine scaffold
is favorable to increase selectivity toward CDK, as can
be seen from inspection of Figure 6b with the corre-
sponding CPCA loading plots for all three GRID-derived
MIFs. The GRID carbonyl oxygen (O) probe indicates
an interaction at the roscovitine N-benzyl ring, which
could be used in further derivatives to increase selectiv-
ity. The N1 probe indicates a favorable interaction
toward the CDK family in the vicinity of the roscovitine
primary hydroxy functionality, which agrees to the
improved selectivity, when comparing isopentenylad-
enine to all other molecules in Table 3. In addition, the
inspection of CPCA loading plots indicates that the
kinases phosphate binding region offers additional
opportunities to achieve selective interactions, while this

Figure 6. CPCA differential plots for the first (a) and second
(b) CPCA component for all three individual probes to highlight
differences between CDK/MAP und PKA kinases in their
protein-probe interaction pattern. The X-ray structure of
roscovitine taken from its complex with CDK2 is shown for
comparison, while hydrogens are omitted for clarity. Please
note different binding modes for roscovitine and ATP in Figure
5. Characteristic interactions from the GRID DRY probe are
shown in the upper left part for both differential plots, to the
carbonyl probe in the upper right panel and to the N1 probe
in the lower left panel.
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region has not been explored by any of the shown
compounds.

Those CPCA loading plots derived from particular
GRID MIFs are highly influenced by the particular
conformation of a protein binding site, as geometrical
changes cause different protein-ligand interaction pat-
terns. In the CDK family, the observed selectivity
differences within the phosphate binding region are
mainly caused by so-called inactive CDK conformation
without bound cyclin. As kinases are similar to molec-
ular switches in a cellular signaling cascade, they adopt
either an active or an inactive conformation, which
significantly differ in their local conformation in the
ATP binding site. A stabilization of the inactive confor-
mations would be a valuable approach for drug design,
also in agreement with the target family landscape.

3.3. CoMFA and CoMSIA Statistical Models. To
get additional information on key protein-ligand in-
teractions favorable for affinity within the active site
for CDKs and compare those with the obtained target
family landscape for selectivity, a 3D-QSAR analysis of
a series of 86 2,6,9-substituted purines25 was carried
out. This data set includes molecules from the previous
section to highlight selectivity regions (except isopen-
tenyladenine), while broader affinity data for all com-
pounds were not available. Although this data set was
used for external validation of a previously reported
CDK1 3D-QSAR model,26 it has never been used to our
knowledge as a training data set for QSAR. Our inten-
tion was to use 3D-QSAR results only to compare key
determinants for CDK1 affinity with those required for
selectivity unveiled in the previous section. The result-
ing 3D-QSAR models to explain CDK1 affinity based
on the alignment rule derived using the purvalanol
B/CDK2 active site structure showed a high degree of
internal consistency. This section summarizes statistical
results for both CoMFA and CoMSIA models and the

model validation studies. A CoMFA model with an r2-
(cv) value of 0.63 for five relevant PLS components and
a conventional r2 of 0.86 was obtained (Table 3). The
alignment and the graph of observed vs fitted biological
activities52 are displayed in Figure 7. The steric field
descriptors (1716 grid-based variables) explain 49% of
the variance, while the electrostatic field accounts for
51%.

The effect of the alignment relative to the grid
position was evaluated by consistently moving all
compounds in increments of 0.5 Å in all three dimen-
sions x, y, and z. Here, the relative alignment is not
changed, but the absolute orientation with respect to
the grid is changed. The r2(cv) values for each orienta-
tion range from 0.63 to 0.56 (mean r2(cv), 0.59; SD, 0.03)
for five component PLS models, suggesting only a minor
dependence of the final model on the absolute orienta-
tion of the grid box. The effect of different choices of
the origin of the grid was investigated using 14 atom
types in addition to carbon C3 as probe atoms with a 2
Å grid spacing. The r2(cv) values for each probe atom
range from 0.63 to 0.57 for five components PLS models
with C3 and other carbon-based atom types showing the
highest r2(cv), showing only a slight dependence on the
chosen probe (mean r2(cv), 0.59; SD, 0.03).

The mean r2(cv) for 100 randomizations of the biologi-
cal activity is -0.09 (SD, 0.10; high, 0.04; low, -0.38),
showing that the final CoMFA model is significantly
better than a random model. PLS analyses were run
100 times each with two and five randomly chosen cross
validation groups, respectively. The mean r2(cv) value
of 0.60 for five PLS components and five cross validation
groups (SD, 0.04; high, 0.68; low, 0.51) is slightly lower
than using the leave-one-out method. Using only two
cross validation groups, a lower mean r2(cv) value of 0.53
for five PLS components was observed (SD, 0.07; high,

Figure 7. (a) Superposition of 86 2,6,9-substituted purines as CDK1 inhibitors taken from ref 25 for 3D-QSAR studies (Table 4),
built on the basis of the docked conformation of purvalanol B in CDK2 and fitted into the protein cavity. Hydrogens are omitted
for clarity; characteristic regions in the CDK2 active site are schematically indicated. (b) Graph of observed vs fitted biological
activity for the CoMFA model.
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0.69; low, 0.27). Both investigations support the finding
of a stable, significant, and predictive model.

Similar results were obtained for CoMSIA, a model
with a slightly lower r2(cv) value of 0.56 for six PLS
components, and a conventional r2 of 0.87 was obtained
(Table 3). The steric field descriptors (1716 variables)
explain only 20% of the variance, while the proportion
of the electrostatic descriptors remains in a similar
range with 40%. The additional hydrophobic field
explains the remaining 40% of the variance. When
randomizing biological activities, a mean r2(cv) of -0.11
(SD, 0.14; high, 0.18; low, -0.59) is observed, revealing
the significance of this model. When averaging 100 PLS
analyses with two random cross validation groups, a
mean r2(cv) of 0.42 (SD, 0.09; high, 0.63; low, 0.12)
results for six component models. This value is even
increased, when using five cross validation groups.
Here, a mean r2(cv) of 0.52 (SD, 0.05; high, 0.60; low,
0.34) results for six PLS components and five cross

validation groups, which again is only slightly lower
than the r2(cv) value obtained using the leave-one-out
procedure.

3.4. Interpretation of 3D-QSAR Models for Af-
finity and Selectivity. The steric and electrostatic
std*coeff fields for the final CoMFA analysis A of 86
molecules based on the alignment from the CDK ATP
binding site topology are displayed in Figure 8 with the
potent inhibitor purvalanol B (Table 3). In Figure 8a,
steric field contributions correlated with biological activ-
ity changes are displayed. Green contours (>80% con-
tribution) indicate regions where steric bulk is favorable
for new inhibitors, while yellow contours (<20% contri-
bution) highlight regions where bulky substituents are
detrimental for biological activity. A similar analysis is
given for the electrostatic SD*coeff field (Figure 8b).
Blue contours (>80% contribution) refer to regions
where an increase of positive charge (or a decrease of
negative charge) is favored for new ligands to enhance

Figure 8. Contour maps from the final CoMFA and CoMSIA analyses in combination with the inhibitor purvalanol B; hydrogens
are omitted for clarity. (a) CoMFA steric std*coeff contour map. Green contours (>80% contribution) refer to sterically favored
regions; yellow contours (<20% contribution) indicate disfavored areas. (b) CoMFA electrostatic std*coeff contour map. Blue contours
(>80% contribution) refer to regions where negatively charged substituents are disfavorable; red contours (<20% contribution)
indicate regions where negatively charged substituents are favorable. (c) CoMSIA steric std*coeff contour map with CDK2 solvent
accessible surface. Green contours (>80% contribution) refer to sterically favored regions; yellow contours (<20% contribution)
indicate disfavored areas. (d) CoMSIA electrostatic std*coeff contour map with CDK2 solvent accessible surface. Blue contours
(>80% contribution) refer to regions where negatively charged substituents are disfavorable; red contours (<20% contribution)
indicate regions where negatively charged substituents are favorable. (e) CoMSIA hydrophobic std*coeff contour map with CDK2
solvent accessible surface. Cyan contours (>80% contribution) refer to regions where hydrophilic substituents are favorable; orange
contours (<20% contribution) indicate regions where hydrophobic substituents are favorable.
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affinity, while red contours (<20% contribution) indicate
those regions where an increase of negative charge is
favorable for biological activity. Those 3D-QSAR results
were derived taking only ligand information into ac-
count, which was generated by docking and minimiza-
tion of protein-ligand complexes. However, the PLS
contour maps are interpreted in combination with the
ATP binding site topology to underscore consistency
with steric, electrostatic, and hydrophobic requirements
of this kinase ATP binding site and to identify those
regions that favorably both influence affinity and se-
lectivity.

The interpretation of the steric CoMFA contour maps
shows steric bulky substituents to be favorable at
positions N9 directed toward the CDK hydrophobic
back-pocket and in some positions close to the hydroxy-
ethyl substitution at N1′. Those contour maps indicate
that adding an additional ethyl or isopropyl group to
the hydroxyethyl substituent increases affinity toward
CDK1. As both regions have consistently been identified
to be important for achieving selective interactions
toward the CDK family, they are of high relevance for
further CDK-directed inhibitor design. Furthermore,
steric bulk is favorable close to the m-chlorine substitu-
ent of purvalanol B, demonstrating its positive influence
on both affinity and selectivity. The interpretation of
the CoMSIA model is consistent to CoMFA. The corre-
sponding contour maps are displayed in Figures 8c-e
in combination with the solvent accessible surface
derived from the purvalanol B binding site of its complex
with CDK2. Again, green contours from the PLS-derived
std*coeff field (>80% contribution) indicate regions
where steric bulk is favorable, while yellow contours
(<20% contribution) highlight regions where steric bulk
is detrimental. The sterically favorable region at N9 is
only visible in CoMSIA at lower contour regions.

The inspection of the CoMFA and CoMSIA electro-
static contour maps in Figure 8b,d indicates that more
positive charge at the phosphate binding pocket at the
entrance of the ATP binding site is favorable, which is
typically occupied by the hydroxyethyl substituent in
this series. This preference is reflected in the target
family landscape CPCA maps for polar N1 and CdO
probes indicating that polar substitutions in this area
increase selectivity toward CDK. More negative charge
is favorable close to the primary hydroxyl group of the
substituent attached to N1′ and close to the purvalanol
B carboxylate, which agrees to the selectivity model.

To estimate entropic contributions to ligand binding,
hydrophobic CoMSIA fields were incorporated into the
PLS analysis. Cyan contour regions in Figure 8e indi-
cate regions where hydrophilic interactions are favor-
able for biological activity (>80% contribution). Those
regions are located close to the purvalanol B carboxylate
and primary hydroxy group, showing the importance of
polar substituents in those areas for active and selective
CDK inhibitors. The main favorable hydrophobic inter-
action, as indicated by orange contour regions (<20%
contribution), is close to the isopropyl substituent at-
tached to C2′ in purvalanol B. As mentioned, hydro-
phobic interactions characterized using the GRID DRY
probe were important to achieve selective interactions
toward CDK2 and thus provide a favorable area for
chemical optimization toward this important family.

Hence, the analysis of MIFs plus an informative data
set with 86 purines as CDK1 inhibitors show that it is
possible to identify regions in the CDK ATP binding site,
which are on one hand related to favorable protein-
ligand interactions toward potent inhibitors, while some
of these regions were identified in the target family
landscape contour maps to increase selective interac-
tions toward this kinase subfamily.

4. Conclusions
Using an efficient method to compute potentially

favorable protein-ligand interactions combined with
modern chemometrical tools, it was possible to identify
subfamilies in the kinase superfamily derived from
differences in favorable protein-ligand interactions in
the ATP binding site. A plot indicating similarities and
differences in this target family derived from PCA and/
or CPCA score plots was obtained, allowing us to
identify selectivity areas. This model was able to
rationalize selectivity differences for a small series of
2,6,9-substituted purines tested in a broader panel of
kinases and gave useful insights into key protein-
ligand interactions, which are unique to a particular
subfamily. The classification of kinase subfamilies could
also be used to guide the search and identification for
related kinases for a particular target to be assayed for
selectivity. After the qualitative agreement between
selectivity profiles for substituted purines as CDK
inhibitors, a 3D-QSAR analysis of a larger series of
2,6,9-substituted purines led to the extraction of key
protein-ligand interactions, which are favorable for
affinity in this series. The resulting 3D-QSAR models
were consistent for explaining CDK1 affinity and pro-
vide valuable insights for further drug design programs.
Finally, both analyses were combined toward the iden-
tification of binding site areas and favorable protein-
ligand interactions, which allow us to design potent and
selective kinase inhibitors.

This target family landscape-derived classification is
also in good agreement with internal selectivity data
on ligand interactions with various kinases and provides
valuable information for designing novel, selective
inhibitors. The employed data set of 26 X-ray structures
offers a solid basis to investigate selectivities within this
important protein family, while those structures do not
always represent different proteins but also mutants
and proteins from different species. Unfortunately,
many important kinases have not yet been crystallized,
while the rapidly growing protein structure database
will enable us to apply this chemometrical analysis
technique to larger and thus more informative protein
data sets, allowing to obtain a better view from protein
binding sites to discriminating interactions responsible
for selectivity. The presented work was carried out to
illustrate the potential in analyzing a protein family by
means of target family landscapes. It now becomes
possible to highlight main discriminating features be-
tween distinct protein families, while it also offers the
opportunity to differentiate between related proteins for
fine-tuning of selectivities. Hence, a better view of
selectivities on a molecular level driven by protein
ligand interactions emerges.
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